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Abstract: Fermentation process is vital and important in many biotechnological applications. However modeling
the fermentation process is considered a challenging and complex problem. The complexity of the problem is
driven by the need of efficient, accurate, not expensive, and reliable predictive models. In this paper, we apply a
Takagi-Sugeno Fuzzy Logic technique for modeling the lipase activity production based on nutritional and physico-
chemical factors to estimate the lipase activities. The accuracy of the developed fuzzy model is measured, validated
and compared with both the multiple regression and artificial neural network models. The fuzzy model successfully
showed competitive and promising modeling results.
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1 Introduction

Lipase production is getting more and more atten-
tion in the industry and business field recently due to
their biotechnological applications [1]. Lipases have
a wide range of uses in industry productions such
as diary-based products, detergents, drugs, cosmetics
and leather processes [2]. On the other side, Lipase
production is a challenging, complex and not easy to
model or monitor [2]. The complexity is due to the na-
ture of lipase production which is highly dependent on
its operating conditions that affect its growth. These
operating conditions include nutritional and physico-
chemical factors such as temperature, initial pH, incu-
bation period, time, inoculum size and agitation rate
[1–3]. Consequently, deciding upon an optimization
method and choosing a modeling technique are vital
issues in the process of producing reliable lipase prod-
ucts with high standards. Efficient optimization and
modeling can dramatically improve the system per-
formance and reduce the costs [3].

In biologyical research, response surface method-
ology (RSM) is one of the most applied methods in
modeling the biological processes. RSM is a statisti-
cal and mathematical based system for modeling and
optimizing complex processes. RSM explores the re-
lationships between the response (output variable) and
the independent variables (input variables). RSM has
many advantages such as it reflects the significance of
the input variables, alone or in combination, in a given
model. Moreover, it reduces the cost of analysis by
minimizing the number of experimental trials needed
to evaluate input variables and their interactions [4].

Though, RSA is not applicable in all biological appli-
cations [3].

In many cases, output results are out of expecta-
tions when modeling and predicting systems based on
mathematical equations are used for controlling the
interactions between the input variables in the pro-
cess for lipase fermentation. Therefore, a consider-
able number of previous studies employed empirical
models based on artificial intelligence and machine
learning approaches. By the following paragraphs we
give an insight into some important studies in the field.

Among artificial intelligence and machine learn-
ing approaches, Artificial Neural Networks (ANNs)
are the most applied in lipase modeling and predic-
tion. In [3] authors used the best composition of pro-
duction medium among the best previously published
media, then they made a comparison by applying both
RSM and ANN for optimizing the physical factors
for extracellular thermostable lipase production. Al-
though both techniques gave good predictions, the
ANN showed better performance in data fitting and
estimation capabilities. However ANN in general suf-
fers some disadvantages; ANNs relatively need large
amounts of data for training and they work as black
input/output box, it is hard to interpret their results.

In [5] ANN model, based on feed forward ar-
chitecture and back propagation as training algorithm
was applied to predict the state of batch fermenta-
tions with grape juice extracted from grape waste.
The Levenberg- Marquardt optimization technique
has been used to upgrade the network by minimiz-
ing the sum square error (SSE). Authors found that
the best performance of the model for predicting cell
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mass and ethanol concentration is can be obtained us-
ing a neural network with two hidden layers of 15 and
16 neurons, respectively.

Other famous approaches are Genetic Program-
ming (GP) and Genetic Algorithms (GA). Both ap-
proaches are evolutionary techniques inspired from
biology concepts. GP and GA applied for modeling
lipase production by researches but they are less com-
mon than ANN. For example, in [6] authors applied
GP as evolutionary computation methodology for de-
veloping an efficient model for the fermentation pro-
cess. Authors compared their results with others ob-
tained from traditional experimental design approach
(Box-Behnken). Their final results show the superior-
ity of the GP in modeling the fermentation process.

In [7], a modified genetic algorithm is proposed
for a parameter identification of an E. coli fedbatch
fermentation model. Authors made some adjustments
of the genetic parameters regarding the fermentation
processes, to improve the conventional genetic algo-
rithm. Authors claim that the modified GA for a pa-
rameter identification of the problem can be efficient
and effective. Applying of the modified GA can de-
crease the running time but relatively still high.

In this paper we apply a Takagi-Sugeno fuzzy
technique for modeling the lipase activity production
based on Temperature, pH, Inoculum, Time and Agi-
tation as input variables of 26 experiments. Then we
measure the accuracy of the developed fuzzy model
and compare it with a conventional polynomial model.

2 Multiple Regression (MR) Model

This approach uses the method of least squares esti-
mation (LSE), to model a relationship between one
dependent and many independent variables. Multiple
regression models were used to solve variety of mod-
eling problems. To show how the parameter estima-
tion process work, we assume that a system with five
input variables x1, x2, x3, x4, x5 and single output y
can be modeled with a single function f . the function
f could have a different level of complexity.

For simplicity we will assume that f is a simple
linear function as given in Equation 1. The level of
complexity could be higher as we will discuss later in
our case study which is given in Equation 9. The mul-
tiple regression model has the following mathematical

representation.

y = f(x)

= a0 +
n=5∑
i=1

aixi

= a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5

(1)

To find the values of the model parameters a’s we need
to build what is called the regression matrix Φ. This
matrix is developed based on the experiment collected
measurements. Thus, Φ can be presented as follows
given there is a set of measurements m:

Φ =


x11 x12 x13 x14 x15
x21 x22 x23 x24 x25
...

...
...

...
...

xm1 xm2 xm3 xm4 xm5


The parameter vector a and the output vector y can be
presented as follows:

θ =


a1
a2
a3
a4

 y =


y1

y2

...
ym


The least squares solution of yields the normal

equation:

Φa = y

a = Φ−1y (2)

But since, the regression matrix Φ is not a sym-
metric matrix, we have to reformulate the equation
such that the solution for the parameter vector a is as
follows:

a = (ΦTΦ)−1ΦT y (3)

The second order regression model is given in Equa-
tion 4. This model can provide a better accuracy than
the first order model since it provides more dynamics
and nonlinearity.

y = a0 +
n∑

i=0

aixi +
n∑

i=0

n∑
j=0

aijxixj (4)

3 Fuzzy Modeling
Soft computing techniques were used to mimic the
powerful parallel processing capabilities of the human
brain. These techniques were capable of solving vari-
ety of modeling problems in computer science and en-
gineering. These models can describe the non-linear
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relationships between model parameters in an effec-
tive way. These techniques include artificial neural
networks [5], fuzzy logic [8–10], swarm intelligence,
agent based modeling [11], differential evolution, ge-
netic algorithms [4, 12] and genetic programming [6].
A fuzzy model structure can be represented by a set
of fuzzy If-Then rules [13]. A rule-based fuzzy model
requires the identification of the following quantities:

• the antecedent,

• the consequent structure of the membership
functions,

• the estimation of the consequent regression pa-
rameters and

• in this work, an additional parameters have to be
selected which is the number of rules (clusters)
σ. This parameter is specified by the user.

The above quantities have to be defined in vari-
ous operating regions. The number of rules used to
solve the nonlinear modeling problem can be deter-
mined automatically.

3.1 What is FIS?
In Figure 1, we show a flow diagram of the proposed
fuzzy logic system used in this study. The system con-
sists of number of stages.

1. Fuzzification: In this stage, the model inputs
and outputs variables are defined.

2. Inference: Fuzzy inference is defined as the pro-
cess of mapping from input state to an output
state based fuzzy sets theory. The mapping con-
structs the system decision making. The process
of fuzzy inference include: Membership func-
tions, Fuzzy set operation, and If-Then rules. FIS
may be summarized as two processes:

• Aggregation: Compute the IF part (i.e. an-
tecedent) of the rules. The antecedent vari-
ables reflect information about the process
operating conditions.

• Composition: Compute the THEN part (i.e.
consequence) of the rules. The consequent
of the rule is usually a linear regression
model which is valid around the given op-
erating condition [14–16].

3. Defuzzification: The output variable computed
in the previous stage are then converted to real
output value.

3.2 Takagi-Sugeno (TS) Fuzzy Model
This modified inference approach is a universal ap-
proximator of any smooth nonlinear system was pro-
posed by Takagi and Sugeno [17, 18]. Takagi-Sugeno
Fuzzy Model is represented by a small set of fuzzy
IF-THEN rules that describe local input-output func-
tions of a nonlinear system [19]. Each rule has the
following form:

IF x1 isAr1ANDx2 isAr2 .. ANDxn isArn

THEN u = fr(x1, x2, .., xn)

where Aij is a fuzzy set, Xk is input vari-
able and u is a local output variable. Sup-
pose that Hi is the validity of the logical ex-
pression x1 isAr1ANDx2 isAr2 .. ANDxn isArn

is Ri then the final output of the model can be com-
puted as a weighted mean value over all rules accord-
ing to 5.

u
′
=

∑N
i=1Hifi(x1, x2, .., xN )∑N

i=1Hi

4 Problem Formulation
Our objective is to control the dynamics of the lipase
production process during its growth and instead of
representing it in a single nonlinear model by a set of
local linear models. Each local model should be able
to represents the relationship between the input vari-
ables x1, x2, x3, x4, x5 which represent Temperature,
pH, Inoculum, Time and Agitation, respectively, and
the observed y in a certain range of operating condi-
tions. Thus, we would like to find a function f for this
relation as given in Equation 5 in a form of set of fuzzy
rules as given in R1. Such a proposed fuzzy model
structure can be successfully represented by means of
fuzzy If-Then rules.

ŷ = f(x1, x2, x3, x4, x5) (5)

R1 : If x1 is A11 and x2 is A12 and x3 is A13

and x4 is A14 and x5 is A15 then
y = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5

Using membership functions and the antecedent
of the rule we can define the fuzzy region in the prod-
uct space. The antecedent variables give the condi-
tion of the process status now. The consequent of the
rule is typically a local linear regression model which
relates y with x1, x2, x3, x4, x5.
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Figure 1: The proposed fuzzy logic system

A rule-based fuzzy model requires the identifica-
tion of the antecedent and the consequent structure,
the type of the membership functions for different op-
erating regions and the estimation of the consequent
parameters. The proposed presented technique does
not require any a prior knowledge about the operating
regimes. If a sufficiently number of measurements are
collected which reflects the operating ranges of inter-
est, the developed fuzzy model will be efficient one.

4.1 Evaluation Criteria
The performance of the developed two models; the
regression and the fuzzy shall be evaluated using three
evaluation criteria. They include:

• the Variance-Accounted-For (VAF):

V AF = [1− var(y − ŷ)

var(y)
]× 100% (6)

• The Euclidian distance (ED):

ED =

√√√√(

n∑
i=1

(yi − ŷi)2 (7)

• The Manhattan distance (MD):

MD = (

n∑
i=1

|yi − ŷi|) (8)

where y and ŷ are the actual lipase activates and
the estimated activates based on proposed model and
n is the number of measurements used in the experi-
ments, respectively.

5 Lipase Data Set
The data set used in this study was presented in [20].
Author stated that the experimental data was collected
for the included variables and their selected levels, af-
ter the preliminary study, for the lipase production op-
timization in SmF were: incubation temperature (27 -
45C); initial pH (6 - 9); inoculum size (1 - 5%); agita-
tion rate (0 - 200 rpm) and incubation period (24 - 96
h). The variables and their levels in SSF were: incuba-
tion temperature (27− 450C); initial pH (6 - 9); mois-
ture content (60 - 100%); olive oil (0 - 20%) and in-
cubation period (72 - 168 h). In [20], authors used ex-
plored the use of Artificial Neural Networks to model
the lipase activities. Their reported estimated lipase
activities based ANN used five independent variables.
They show the observed values of lipase activity in
SmF. We report their results on Table 2.

6 Experimental Results
6.1 Developed MR Model
MR was used to find a relationship between several
independent or predictor variables and a dependent
variable. This relationship need to fit within accept-
able level of error such that the relation is valid. MR
particularly used since regression analysis helps the
system designer to understand the status of a depen-
dent variable changes while one or more of the inde-
pendent variables also changed.

Many authors in the area of lipase production
analysis and biocheisty used the first and second or-
der MR model to solve this problem. For exam-
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ple, in [21], author used the statistical software pack-
age Minitab version 15 (Minitab Ltd., Coventry CV3
2TE, UK) was used for analyzing the experimental
data and developed a first order MR model. They
checked the goodness of fit model by the determi-
nation of coefficient (R2) which indicated that the
model could explain up to 98.67% variation of the
data. In [22], the design of an optimum and cost-
efficient medium for high-level production of hydro-
gen by Ethanoligenens harbinense B49 was attempted
using the Plackett-Burman design model. The tech-
nique is based on the first-order polynomial model.
They also used the multiple regression analysis on the
experimental data and used the second-order polyno-
mial model to explain the hydrogen production. The
optimization of physical parameters for lipase produc-
tion from Arthrobacter sp. BGCC No. 490 using MR
second order model [23]. Many others used the sec-
ond order MR model to solve diversity of problem in
the area of Biochemistry [24, 25].

According to previous studies, it was found that
the MR second order model is a promising choice to
model the lipase activity. That is why in our study, we
adopted it for the purpose of comparison. The adopted
MR equation is given as:

ŷ = a0 + a1x1 + a2x2 + a3x3 + a3x4 + a5x5

+ a6x
2
1 + a7x

2
2 + a8x

2
3 + a9x

2
4 + a10x

2
5

+ a11x1x2 + a12x1x3 + a13x1x4 + a14x1x5

+ a15x2x3 + a16x2x4 + a17x2x5

+ a18x3x4 + a19x3x5 + a20x4x5 (9)

where ŷ is the predicted lipase activities, a0
model constant; x1, x2, x3, x4 and x5 are indepen-
dent variables; a1, a2, a3, a4 and a5 are linear coeffi-
cients; a6, a7, a8, a9 and a10 are the quadratic coeffi-
cients; a11, a12, a13, . . . are the cross product coeffi-
cients. The values of the parameters a were obtained
by solving this regression problem. We estimated the
parameters of this model using Least Square Estima-
tion (LSE). The model parameters are given in Table
1.

6.2 Developed Fuzzy Model
To develop our results, we used the Fuzzy Model
Identification Toolbox (FMID), implemented in MAT-
LAB [26]. The number of clusters σ need to be spec-
ified in advance. We have tested number of clusters
and observed number of evaluation criterion. The de-
veloped fuzzy rules for lipase activities production are
given in Table 3. In Figure 2, we show the error dif-
ference between the three techniques adopted in this
study.

Table 1: Estmaited values of a’s using LSE with
a0=155.6888

a1 a2 a3 a4 a5
-1.6136 -22.8679 -20.4559 -0.7810 0.3274

a6 a7 a8 a9 a10
0.0028 1.0607 -0.4272 -0.0010 -0.0003
a11 a12 a13 a14 a15

0.0825 0.2319 0.0088 -0.0053 1.1630
a16 a17 a18 a19 a20

0.0570 -0.0119 0.0599 0.0195 -0.0003

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Experiment Number

 Absolute Error Difference

 

 
NN error
MR error
FL error

Figure 2: Computed error in the NN, MR and FL
cases
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Table 2: Estimated Lipase Production Activity Using FL Model
Temp. pH Inoculum Time Agitation Lipase Act. ANN MR Fuzzy
Co (%) (h) (rpm) Measured model in [20] model model

40.9 8.3 1.9 79.8 45.1 8 7.9 8.8808 7.3466
40.9 6.7 4.1 79.8 45.1 3.6 3.7 4.4808 2.3755
31.1 8.3 4.1 40.2 154.9 10.6 7 11.4808 9.9609
40.9 8.3 4.1 40.2 45.1 5.5 7 6.3808 7.3989
40.9 8.3 1.9 40.2 154.9 4.8 4.1 5.6808 5.1985
40.9 6.7 1.9 79.8 154.9 2.4 1.1 3.2808 2.4247
31.1 6.7 4.1 79.8 154.9 7.2 7.5 8.0808 6.5098
31.1 8.3 1.9 79.8 154.9 8.5 6.2 9.3808 10.0611
40.9 6.7 4.1 40.2 154.9 5.6 6.3 6.4808 5.7953
31.1 8.3 4.1 79.8 45.1 5.2 5.6 6.0808 4.7972
31.1 6.7 1.9 40.2 45.1 8.3 8.6 10.0617 7.9416
27 7.5 3 60 100 11.2 10.2 9.6334 11.3319
45 7.5 3 60 100 9.4 10.4 7.8334 8.8956
36 6 3 60 100 9.8 9.9 8.2967 10.4795
36 9 3 60 100 15 13.4 13.4967 13.4307
36 7.5 1 60 100 9.2 9.5 7.6013 8.1593
36 7.5 5 60 100 7.6 3.4 6.0013 7.5686
36 7.5 3 24 100 9.2 11.9 7.6013 8.1315
36 7.5 3 96 100 8.4 8.3 6.8013 8.9156
36 7.5 3 60 0 4.2 5.8 2.6071 4.5621
36 7.5 3 60 200 10.6 9.8 9.0071 10.0889
36 7.5 3 60 100 7.2 10 8.5101 8.0652
36 7.5 3 60 100 7.6 X 8.5101 8.0652
36 7.5 3 60 100 5.9 X 8.5101 8.0652
36 7.5 3 60 100 8.1 X 8.5101 8.0652
36 7.5 3 60 100 8.6 X 8.5101 8.0652
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Figure 3 shows the value of input variables of
the fuzzy model in all experiments. While Figure 4,
shows the five input variables in terms of fuzzy sets
and their ranges. Finally, Figure 5 shows the actual
and estimated lipase activities in real experiments and
developed fuzzy model.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16
 Actual and Estimated Lipase activity Using FL Model 

 Experiment Number

Figure 5: Actual and estimated response using Takagi-
Sugeno fuzzy model

In order to compare the results of the fuzzy model
with the polynomial one, the VAF was computed also
for the polynomial model. The computed values are
give in Table 4. It is clearly shown that the perfor-
mance of the fuzzy model exceeds the polynomial
model with more than 10% of increase and 25% in-
crease over ANN models.

Table 4: VAF for the ANN, MR and FL models
No. ANN MR Fuzzy Logic

Model in [20] Model Model
VAF 64.15% 79.26% 90.98%
ED 3.90 3.89 2.18
MD 27.50 27.63 15.34

7 Conclusions and Future Work
In this paper, we used Takagi-Sugeno Fuzzy Logic
technique for biotechnological process modeling of
thermostable lipase production based on nutritional
and physico-chemical factors. The proposed fuzzy
model was able to estimate the lipase activities with
high accuracy. In order to verify the approach ap-
plied, the results were compared with both the mul-
tiple regression and artificial neural network models.

The fuzzy model showed a superior performance in
modeling the complex process.
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Figure 3: The input data for the Takagi-Sugeno fuzzy model

Table 3: Fuzzy Rules for lipase activities production

1. If x1 is A11 and x2 is A12 and x3 is A13 and x4 is A14 and x5 is A15 then
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y = 1.30 · 100x1 + 1.07 · 101x2 + 5.57 · 100x3 + 1.36 · 10−1x4 + 2.44 · 10−1x5 − 2.07 · 102
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[14] R. Babuška. Fuzzy Modeling and Identifica-
tion. PhD thesis, Delft Univesrsity of Technol-
ogy, 1996.
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